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The quadratic reciprocity law
and the Gauss–Schering lemma

Heng Huat Chan and Teoh Guan Chua

Abstract. In this article, we present a proof of the Gauss–Schering Lemma
using the Quadratic Reciprocity Laws for the Jacobi symbol.

1. Introduction

Definition 1.1 (Legendre symbol). Let p be an odd prime. The Legendre

symbol

(
a

p

)
L

is defined to be

(
a

p

)
L

=

⎧⎪⎨
⎪⎩
0 if (a, p) �= 1,

1 if x2 ≡ a (mod p) is solvable,

−1 otherwise.

The main part of the famous Gauss’s Law of Quadratic Reciprocity is the
following.

Theorem 1.2 (Law of Quadratic Reciprocity). If p and q are distinct odd
primes then

(1.1)

(
p

q

)
L

(
q

p

)
L

= (−1)(p−1)(q−1)/4.

There are many proofs of (1.1) and several of these proofs involve a lemma,
now known as Gauss’s Lemma. Before we state Gauss’s Lemma, we introduce some
notations.

Let

rn(s) = the least non-negative residue of s modulo n,

Hn = {j|1 � j � (n− 1)/2},
Sa,n = {rn(aj)|j ∈ Hn},

and

μ(a, n) = |{s ∈ Sa,n|s �∈ Hn}|.
Gauss’s Lemma gives a relation between the Legendre symbol and μ(a, p).
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Lemma 1.3 (Gauss’s Lemma). Let p be an odd prime number and a be any
positive integer such that (a, p) = 1. Then(

a

p

)
L

= (−1)μ(a,p).

A usual proof of Lemma 1.3 uses Euler’s criterion which states that (see for
example [5, p. 101, Corollary 2.38])

(1.2)

(
a

p

)
L

≡ a(p−1)/2 (mod p).

Remark 1.4. Another proof of Gauss’s Lemma which involves the “transfer
map” in group theory can be found in [10, p. 91, Section 7.3].

The Legendre symbol has a natural extension to composite odd positive inte-
gers. It is now known as the Jacobi symbol.

Definition 1.5 (Jacobi symbol). Let a be any integer. The Jacobi symbol(a
b

)
J
is defined for odd positive integer b by

(a
b

)
J
=

k∏
j=1

(
a

pj

)αj

L

if b =
∏k

j=1 p
αj

j .

Surprisingly, the Jacobi symbol satisfies a relation similar to (1.1).

Theorem 1.6 (Law of Quadratic Reciprocity for the Jacobi symbol). If a and
b are odd positive integers satisfying (a, b) = 1, then

(1.3)
(a
b

)
J

(
b

a

)
J

= (−1)(a−1)(b−1)/4.

Remark 1.7. The proof of (1.3) follows from (1.1) and requires only the simple
congruence

a− 1

2
+

b− 1

2
≡ ab− 1

2
(mod 2),

where a and b are odd positive integers. See [5, p. 145] for more details.

Since the discovery of (1.3), there are proofs of (1.3) which are independent
of (1.1). Two of the earliest published works on proving (1.3) directly are due to M.
Jenkins [3] and E. Schering [8] (see also [4] for a modern treatment of Schering’s
work). Both Jenkins and Schering used a lemma analogous to Lemma 1.3 but
Schering’s version is an exact analogue of Lemma 1.3 with the prime p replaced
by a composite odd positive integer b. As such, the following lemma is sometimes
known as Gauss–Schering Lemma (see [2]).

Lemma 1.8 (Gauss–Schering Lemma). Let b be a positive odd integer and a be
any positive integer such that (a, b) = 1. Then(a

b

)
J
= (−1)μ(a,b).
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The beauty of Lemma 1.8 is that it is exactly Lemma 1.3 with the prime p
replaced by a composite odd positive integer b. The proofs of Lemma 1.3, however,
cannot be adapted to prove Lemma 1.8. This is due to the fact that Euler’s criterion
(1.2) is false when the prime p is replaced by a composite odd integer n. Since (1.3)
follows from (1.1), we would like to know if we could deduce Lemma 1.8 from (1.3).
This will be discussed in the next section.

2. A proof of the Gauss–Schering Lemma

One of the proofs of (1.1) which is due to Eisenstein (see [9, p. 10]) uses the
following trigonometric identity:

Lemma 2.1. Let m be an odd positive integer. Then

(2.1)
sinmx

sin x
= (2i)m−1

∏
j∈Hm

(
sin2 x− sin2

2πj

m

)
.

Lemma 2.1 can be proved using the identity

xm − 1 =
m∏
j=1

(x− ζjm),

where ζm = e4πi/m where m is odd. By writing the identity in terms of the sine
function, one arrives at the identity

sinmx = (2i)m−1 sinx

(m−1)/2∏
j=1

sin(x− 2πj/m) sin(x+ 2πj/m)

and Lemma 2.1 follows by using the identity

sin(a+ b) sin(a− b) = (sin a+ sin b)(sin a− sin b).

We now use Lemma 2.1 to show the following:

Lemma 2.2. Let a and b be odd positive integers such that (a, b) = 1. Then

∏
s∈Hb

sin(2asπ/b)

sin(2sπ/b)
= (−1)μ(a,b).

Proof. Let

S1 = {s|s ∈ Sa,b ∩Hb}
and

S2 = {b− s|s ∈ Sa,b but s �∈ Hb}.
Note that |S2| = μ(a, b).

If s ∈ S1 then sin(2asπ/m) = sin(2uπ/m) for some u ∈ Hb. If s ∈ S2 then
sin(2asπ/m) = − sin(2uπ/m) for some u ∈ Hb. Note that since S1 ∪ S2 = Hb,∏

u∈Hb

sin(2auπ/b) = (−1)μ(a,b)
∏

u∈Hb

sin(2uπ/b),

and this completes the proof of the lemma. �
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Reversing the roles of a and b, we find by Lemma 2.2 that∏
t∈Ha

sin(2btπ/a) = (−1)μ(b,a)
∏
t∈Ha

sin(2tπ/a).

By Lemma 2.1, we conclude that

(−1)μ(a,b)+μ(b,a) = (−1)μ(a,b)−μ(b,a) =
∏

s∈Ha

∏
t∈Hb

sin2(2sπ/b)− sin2(2πt/a)

sin2(2tπ/a)− sin2(2sπ/b)

= (−1)(a−1)(b−1)/4.

By (1.3),

(2.2)
(a
b

)
J

(
b

a

)
J

= (−1)(a−1)(b−1)/4 = (−1)μ(a,b)+μ(b,a).

We are now ready to prove Lemma 1.8. Let q be an odd prime and b be any
positive odd integer such that (b, q) = 1. Then by Lemma 1.3, we find that(

b

q

)
J

= (−1)μ(b,q).

By (2.2), we conclude that

(2.3)
(q
b

)
J
= (−1)μ(q,b).

Next, suppose a is any odd positive integer. Since (a, b) = 1, by the Dirichlet
Theorem on primes in arithmetic progression (see for example [1, Chapter 7]), there
exists a prime Q of the form a+ bn. By (2.3),(a

b

)
J
=

(
Q

b

)
J

= (−1)μ(Q,b).

But μ(Q, b) = μ(a, b) since SQ,b = Sa,b Therefore,(a
b

)
J
= (−1)μ(a,b)

and the proof of Lemma 1.8 is complete.

3. Two representations of the Jacobi symbol

In this section, we mention two other representations of the Jacobi symbol.
These representations were established in the literature to provide direct proofs
of (1.3). We will deduce these representations from Lemma 1.8.

Theorem 3.1. Let �x� denote the largest integer less than x, where x is any
real number. Define

s(a, b) =

(b−1)/2∑
j=1

⌊
aj

b

⌋

and

t(a, b) =

(b−1)/2∑
j=1

⌊
2aj

b

⌋
.
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If a and b are odd positive integers such that (a, b) = 1, then(a
b

)
J
= (−1)s(a,b)(3.1)

= (−1)t(a,b).(3.2)

Proof. For each j ∈ Hb and odd positive integer a, write

(3.3) ja = qjb+ rj

with 1 � rj � b− 1. Rewrite ja as

ja =

{
qjb+ rj if rj ∈ Hb,

qjb+ b− sj if rj = b− sj �∈ Hb.

Note that sj ∈ Hb and that there are exactly μ(a, b) number of j such that rj �∈ Hb.
Therefore,

a

(b−1)/2∑
j=1

j ≡ b

(b−1)/2∑
j=1

qj + bμ(a, b) +
∑

rj∈Hb

rj −
∑

rk �∈Hb

sk

≡
(b−1)/2∑

j=1

qj + μ(a, b) +

(b−1)/2∑
j=1

j (mod 2),

where in the last relation, we have used the fact that

{rj |rj ∈ Hb} ∪ {sk|rk = b− sk �∈ Hb} = Hb

and ∑
rj∈Hb

rj −
∑

rk �∈Hb

sk ≡
∑

rj∈Hb

rj +
∑

rk �∈Hb

sk (mod 2).

This implies that
(b−1)/2∑

j=1

⌊
aj

b

⌋
≡ μ(a, b) (mod 2),

and hence

(3.4)
(a
b

)
J
= (−1)μ(a,b) = (−1)s(a,b).

This completes the proof of (3.1).
To prove (3.2), we return to (3.3) and write

2ja =

{
2qjb+ 2rj = �2ja/b�b+ 2rj if rj ∈ Hb,

(2qj + 1)b+ b− 2sj = �2ja/b�b+ b− 2sj if rj = b− sj �∈ Hb.

The second case holds since

b+ 1 � 2rj = 2b− 2sj < 2b

implies that

2ja = (2qj + 1)b+ b− 2sj , 1 � b− 2sj < b.

Hence

2a

(b−1)/2∑
j=1

j ≡ b

(b−1)/2∑
j=1

⌊
2ja

b

⌋
+

∑
rj∈Hb

2rj + bμ(a, b) + 2
∑

rj �∈Hb

sj (mod 2),
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which implies that
(b−1)/2∑

j=1

⌊
2aj

b

⌋
≡ μ(a, b) (mod 2)

and the proof of (3.2) is complete. �

Remark 3.2. The identity (3.2) appears in the work of H. Rademacher in his
study of the Dedekind sum [6, p. 159]. Rademacher established (3.2) using the reci-
procity relations satisfied by the Dedekind sum. He then proved (1.3) using (3.2).

There is another way of proving Lemma 1.8 without the use of (1.3) due to
E. I. Zolotarev [12]. Zolotarev’s proof took a different approach from Schering’s
proof. He defined (a

b

)
Z
= sgn(λa),

where λa is the permutation of Z/bZ which sends [x]b to [ax]b, and sgn(σ) is
the “signum” of the permutation σ. Zolotarev then showed that for odd positive
integers a and b satisfying (a, b) = 1,(a

b

)
Z

(
b

a

)
Z

= (−1)(a−1)(b−1)/4

and (a
b

)
Z
=

(a
b

)
J
.

For a modern treatment of Zolotarev’s work, see [7] and [11].
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